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A Additional Variable Definitions

Firm outcomes The paper examines the relationship between entrepreneur schooling and

several firm outcomes. I use sales and value added as reported in SCIE. In section B.1 below

I also use sales data as reported in QP, which extends further back in time than SCIE but

is often reported for the year prior to the survey year, which might lead to survivor bias.

Employment in figure F.2b is defined as the number of workers reported in QP, including

both entrepreneurs and non-entrepreneurs, regardless of employment status and including

unpaid workers. Section III.D in the paper uses several additional outcomes constructed

from ISCO occupations as reported in QP and from SCIE financial statements data. These

are defined as they are introduced in the analysis.

Controls Sectors are five-digit industries as reported in SCIE, which uses Eurostat’s

NACE Rev. 2 classification, year represents calendar years and firm age is calculated from

the firm’s reported year of incorporation in QP. SCIE also provides an indicator for firm

births. When this indicator implies the firm is older than reported in QP, I use it instead

of QP to define the year of incorporation. Entrepreneur experience represents the average

potential experience of the firm’s entrepreneurs. It is measured as entrepreneur age, reported

in QP, minus years of schooling, minus six. Non-entrepreneur schooling and experience are

the average years of schooling and experience for the workers that the firm employed at

entry, and are both calculated in the same way as for entrepreneurs. Earnings in sections

III.B and III.C in the paper are the sum of base salary and regular supplements divided by

the number of hours worked, all reported in QP.

B Life Cycle Dynamics: Additional Results

B.1 Other Samples

To offer a fuller picture of the life cycle than the 2004-2007 cohorts used in the paper, figure

F.3a plots coefficients for the 1995 to 1997 cohorts, using sales data from QP. These are

the three oldest cohorts I can observe from entry, and I can track them up to age 20. The

patterns are the same as for the 2004-2007 cohorts up to age 10, except that size differences



at entry are somewhat larger. Firms in the top group are twice as large at entry than those

in the bottom group, which corresponds roughly to size differences at age one in figure 1

in the paper. This could be driven by survivor bias in the QP sales data, which are often

reported with a one-year lag as explained above. By age 10, firms in the top group are 2.5

times larger, nearly the same as in figure 1, and by age 20 they are 2.6 times larger, again

suggesting growth paths are mostly parallel at older ages.

This is as far as one can go tracking cohorts observed from entry in the data. Figure

F.3b offers suggestive evidence on firm dynamics beyond age 20 by plotting schooling-by-age

coefficients estimated in the cross-section of firms in 2017. To include older firms, I proxy

for entrepreneur schooling with the education of the first top managers that the firm reports

in the data, not necessarily at entry. The implicit assumption is that top manager schooling

is a persistent firm characteristic. Figure F.4 shows that this is indeed the case by plotting

the average years of schooling of top managers over the life cycle for firms in the 1995-1997

cohorts. More broadly, the one-year autocorrelation of top manager schooling in the full

sample is 0.95 and the ten-year autocorrelation is 0.79.

The cross-sectional patterns are consistent with the cohort evidence up to age 20, and

firms continue on similar growth paths at least up to age 40. Beyond age 40, differences across

groups appear to widen again, although at older ages the proxy for entrepreneur schooling

becomes less defensible, and it is harder to rule out an increased role for assortative matching

between firms and managers.

B.2 Stability Over Time

Figure F.5 shows that the linear relationship documented in figure 4 in the paper is stable

over time. To construct this figure, I add interactions with cohort dummies to the schooling-

by-age terms in equation (2) in the paper, and estimate the resulting equation for all firms

in the 2004 to 2012 cohorts, including sector-by-year fixed effects to account for differences

in sector composition across cohorts.1 Since I only observe the 2012 cohort up to age 5, I

restrict the regression to firms aged 5 or less. I then plot the schooling coefficients at ages

1, 2 and 5 for each cohort. The coefficients are relatively similar across cohorts, ranging

between 0.037 and 0.044 at age one and between 0.061 and 0.076 at age five, and do not

seem to exhibit a trend over time. It should be noted that during the corresponding sample

period, from 2004 to 2017, average years of schooling in the working population rose by over

2 years in the QP data, from 8.17 to 10.42. In addition, Portugal experienced a financial

crisis and a deep recession from 2011 to 2013, during which access to external finance for

firms is likely to have been severely restricted. This lends some support to the externality

1Note I cannot additionally interact the firm age dummies with cohort dummies, since these interactions
would be collinear with year fixed effects.
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validity of the estimated coefficients.

B.3 Other Specifications

Table E.2 presents additional robustness checks by estimating several versions of equation

(2) in the paper using the 2004-2007 cohorts sample. The table reports results for sales,

but the results are very similar for value added. Column one reports baseline estimates.

Column two removes controls for non-entrepreneur schooling and experience, which could

be considered a mechanism, rather than held constant. The entrepreneur schooling-by-

age coefficients are similar to the baseline estimates, suggesting that assortative matching

between entrepreneurial and non-entrepreneurial human capital does not play much of a role

in driving firm dynamics.

About three quarters of the firms in the sample have only one entrepreneur according to

my definition, while the remaining ones have two or more. Column three controls for the

log of the number of entrepreneurs and again the results are very similar. In column four,

I define a unique entrepreneur for each firm by taking the individual with the highest wage

among those identified as entrepreneurs. When there are ties in wages, I take the oldest

individual, and then drop a residual number of observations where age does not break the

tie. The correlation between entrepreneur schooling measured in this way and my baseline

measure is 0.98, and the results are again very similar. Finally, columns five and six cluster

standard errors at the sector and year level, respectively, instead of at the firm level.

B.4 Measurement Error in Expected Earnings

The presence of ν in the error term in equation (6) in the paper attenuates the coefficient on

lnw. This amplifies the coefficient on s if schooling and ability are positively correlated, but

also attenuates the bias correction. If ν represents measurement error uncorrelated with s,

the net effect on the bias-corrected estimate of βe depends on the interaction of measurement

error and ability bias in a regression of labor market earnings on the entrepreneur’s schooling.

Formally, the probability limits of the coefficients on lnw and s equal λe

λw
σ2
e

σ2
e+σ2

ν
and βe −

λe

λw
βw + βw

∗ λe

λw

(
1− σ2

e

σ2
e+σ2

ν

)
respectively, where σ2

ν is the variance of ν, σ2
e is the variance of

the residual from a regression of E(lnw) on s and X, and βw
∗

is the coefficient on s in that

regression. βw
∗

in turn equals βw + λwζ, where ζ is the coefficient on s from a regression

of b on s and X. Applying the bias correction to the coefficient on s therefore leads to a

consistent estimate of

βe − λe

λw
βw + (βw + λwζ)

λe

λw

(
1− σ2

e

σ2
e + σ2

ν

)
+ βw

λe

λw
σ2
e

σ2
e + σ2

ν

= βe + λwζ
λe

λw

(
1− σ2

e

σ2
e + σ2

ν

)
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The literature on returns to schooling has found the ability bias term λwζ to be small,

on the order of 10 percent of βw (Card, 1999), which implies that the bias term on the right-

hand side will be minimal even if measurement error in the outside option is severe. For

example, suppose that measurement error is such that σ2
e

σ2
e+σ2

ν
= 0.5, which implies that the

coefficient on lnw is attenuated by 50 percent. Assuming a return to schooling of βw = 8%

and using the coefficient on lnw at age 10 from column two in table 1 in the paper, the bias

on βe10 would equal 0.08× 0.1× 0.6474 = 0.0052. This compares with an estimate for βe10 of

0.0778 in column two of the same table.

B.5 Sector Heterogeneity

Figure F.6 presents additional evidence on sector heterogeneity along five different dimen-

sions: human capital intensity (Ciccone and Papaioannou, 2009), external finance depen-

dence (Rajan and Zingales, 1998), contract intensity (Nunn, 2007), physical capital intensity,

and finally social networks intensity (Fracassi, 2017). For each dimension, the figure plots

schooling-by-age coefficients from estimating equation (2) in the paper separately for above

and below median sectors.

Data on external financial dependence is from Kroszner, Laeven and Klingebiel (2007),

who reconstruct the Rajan and Zingales (1998) measure at the 3-digit ISIC level. Data on

physical capital intensity is from Bartelsman and Gray (1996), as reported in Ciccone and

Papaioannou (2009). Except for social network intensity, these classifications only cover the

manufacturing sector. Fracassi (2017) only reports the top 10 and bottom 10 sectors by

social network intensity, so I use this instead of above and below median sectors. In each

case, I manually match industries to the NACE rev 2 codes used in SCIE.

The coefficients are larger in more human capital intense sectors, in sectors more depen-

dent on external finance, in more contract intense sectors, in less physical capital intense

sectors and in more social network intense sectors. However, the differences are smaller

than those between high-tech and other sectors shown in figure 9 in the paper, and mostly

insignificant.

Figures F.7 and F.8 present sector specific estimates of equation (2) in the paper at the

one and two digit levels.

C Model Derivations

Throughout the derivations I use the following result on integrals of normal distributions

(Owen, 1980): ∫ ∞
−∞

Φ(a+ bx)φ(x)dx = Φ

(
a√

1 + b2

)
(1)
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where φ and Φ denote the density and CDF of the standard normal distribution.

C.1 Productivity Growth

Let zg denote cumulative growth in z. To derive its stationary distribution, consider first

the case of agents in the growth phase. Following the analogous derivation in Jones and

Kim (2018), an agent who remains in the growth phase at age x has zg(x) = x(µ0 + µ1s),

from equation (9) in the paper. This implies that the density of agents with growth zg(x) is

given by the density of those with age x(zg) = zg
µ0+µ1s

. Given exit and transition to maturity

at rates δ and m, the stationary age distribution of agents in the growth phase will be

exponential with parameter δ +m. The density of growth for these agents will therefore be

given by

f g(zg;αs) = αse
−αszg (2)

where αs is given by equation (15) in the paper.

Now consider the distribution for agents in the mature state. Since productivity in the

mature state is constant, the evolution of the corresponding density fm(zg; s) only depends

on the fraction of agents who transition from the growth state and on exit:

∂fm(zg, t;αs)

∂t
= mf g(zg, t;αs)− δfm(zg, t;αs)

In a stationary distribution, the density for agents in the mature phase must then satisfy

fm(zg;αs) =
m

δ
f g(zg;αs)

This implies that agents in the mature phase inherit the distribution of those in the

growth phase, and that the stationary distribution of zg for all agents with schooling s will

be given by (2).

C.2 Distribution of Firm Productivity

To derive equation (16) in the paper, note first that f ∗(z) is expressed in terms of f(z) and

F (z), the PDF and CDF of z in the population. For an EMG distribution with mean vs,

variance σ2
η and rate αs, these functions are defined as follows:

f
(
z; vs, σ2

η, αs
)

= αse
−αs(z−vs−αsσ2

η/2)Φ

(
z − vs− αsσ2

η

ση

)
(3)

F
(
z; vs, σ2

η, αs
)

= Φ

(
z − vs
ση

)
− e

−αs
(
z−vs−αs

σ2
η
2

)
Φ

(
z − vs− αsσ2

η

ση

)
(4)
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f ∗(z) is given by multiplying f(z) by the fraction of active entrepreneurs for each z, and

dividing by the overall entrepreneurship rate. The fraction of active entrepreneurs for a given

z is Φ
(
z−z∗0−

r̄
σ−1

s

σh(s)/(σ−1)

)
. This follows from equation (13) in the paper and the assumptions on

h, which imply that z∗ is normally distributed with mean z∗0 + r̄
σ−1

s and standard deviation

σh(s)/(σ − 1).

To derive the entrepreneurship rate, integrate f(z)Φ
(
z−z∗0−

r̄
σ−1

s

σh(s)/(σ−1)

)
over all z:

∫ ∞
−∞

αse
−αs(z−vs−αsσ2

η/2)Φ

(
z − vs− αsσ2

η

ση

)
Φ

(
z − z∗0 − r̄

σ−1
s

σh(s)/(σ − 1)

)
dz

Write this as a double integral:∫ ∞
−∞

∫ ∞
z∗

αse
−αs(z−vs−αsσ2

η/2)Φ

(
z − vs− αsσ2

η

ση

)
dz
σ − 1

σh(s)
φ

(
z∗ − z∗0 − r̄

σ−1
s

σh(s)/(σ − 1)

)
dz∗

Use the definition of the EMG CDF in (4) to evaluate the inner integral:

∫ ∞
−∞

[
Φ

(
vs− z∗

ση

)
+ e

−αs
(
z∗−vs−αs

σ2
η
2

)
Φ

(
z∗ − vs− αsσ2

η

ση

)]
σ − 1

σh(s)
φ

(
z∗ − z∗0 − r̄

σ−1
s

σh(s)/(σ − 1)

)
dz∗

Use (1) to evaluate the first integral, and write the second one as a double integral:

Φ

((
v − r̄

σ−1

)
s− z∗0

σξ(s)

)

+

∫ ∞
−∞

∫ ∞
z

e
−αs

(
z∗−vs−αs

σ2
η
2

)
σ − 1

σh(s)ση
φ

(
z∗ − z∗0 − r̄

σ−1
s

σh(s)/(σ − 1)

)
dz∗φ

(
z − vs− αsσ2

η

ση

)
dz

The inner integral in the second term is the partial expectation of a log-normal variable

from z to ∞, leading to:

Φ

((
v − r̄

σ−1

)
s− z∗0

σξ(s)

)
+ e

−αs

(
z∗0+( r̄

σ−1
−v)s−αs

σ2
ξ (s)

2

)

×
∫ ∞
−∞

Φ

−z + z∗0 + r̄
σ−1

s− αs
(
σh(s)
σ−1

)2

σh(s)/(σ − 1)

 1

ση
φ

(
z − vs− αsσ2

η

ση

)
dz
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The remaining integral can be evaluated using (1), yielding:

Φ

((
v − r̄

σ−1

)
s− z∗0

σξ(s)

)
+ e

−αs

(
z∗0+( r̄

σ−1
−v)s−αs

σ2
ξ (s)

2

)
Φ

(
z∗0 +

(
r̄

σ−1
− v
)
s− αsσ2

ξ (s)

σξ(s)

)
(5)

Using the definition of the EMG CDF in (4), this can be written as 1−F
(
z∗0 ;
(
v − r̄

σ−1

)
s, σ2

ξ (s), αs
)
,

which is the expression in the paper.

C.3 Expected Log Productivity at Entry

Start with agents who select into entrepreneurship at birth, and let Θborn denote the fraction

of agents who do so. This is given by

Θborn =

∫ ∞
−∞

∫ ∞
z∗

1

ση
φ

(
z − vs
ση

)
dz
σ − 1

σh(s)
φ

(
z∗ − z∗0 − r̄

σ−1
s

σh(s)/(σ − 1)

)
dz∗

=

∫ ∞
−∞

Φ

(
vs− z∗

ση

)
σ − 1

σh(s)
φ

(
z∗ − z∗0 − r̄

σ−1
s

σh(s)/(σ − 1)

)
dz∗

= Φ

((
v − r̄

σ−1

)
s− z∗0

σξ(s)

)

where the last step uses (1). This corresponds to the first term of (5). Expected log produc-

tivity for these agents can then be expressed as

Eborn(z|s, a = 0) =

∫∞
−∞

∫∞
z∗
z 1
ση
φ
(
z−vs
ση

)
dz σ−1

σh(s)
φ
(
z∗−z∗0−

r̄
σ−1

s

σh(s)/(σ−1)

)
dz∗

Φ

(
(v− r̄

σ−1)s−z∗0
σξ(s)

)
The inner integral can be evaluated as the partial expectation of a normal variable, which

gives

Eborn(z|s, a = 0) =

∫∞
−∞

[
vsΦ

(
vs−z∗
ση

)
+ σηφ

(
z∗−vs
ση

)]
σ−1
σh(s)

φ
(
z∗−z∗0−

r̄
σ−1

s

σh(s)/(σ−1)

)
dz∗

Φ

(
(v− r̄

σ−1)s−z∗0
σξ(s)

)
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The first term can be evaluated using (1). The second can be solved to yield:

Eborn(z|s, a = 0) =

vsΦ

(
(v− r̄

σ−1)s−z∗0
σξ(s)

)
+

σ2
η

σξ(s)
φ

(
−(v− r̄

σ−1)s−z∗0
σξ(s)

)
Φ

(
(v− r̄

σ−1)s−z∗0
σξ(s)

)
= vs+

σ2
η

σξ(s)
M

(
−
(
v − r̄

σ−1

)
s− z∗0

σξ(s)

)

where M(x) = φ(x)
Φ(−x)

is the inverse Mill’s ratio. The first term is the mean of productivity at

birth across all agents, while the second term reflects selection from the fact that only those

agents born with z ≥ z∗ start as entrepreneurs.

Next consider agents who transition into entrepreneurship after birth. These are agents

born with z < z∗ but whose productivity grows to reach z∗ at some point in their lives. The

fraction of agents Θswitch who meet this condition is given by

Θswitch =

∫ ∞
−∞

∫ z∗

−∞
e−αs(z

∗−z) 1

ση
φ

(
z − vs
ση

)
dz
σ − 1

σh(s)
φ

(
z∗ − z∗0 − r̄

σ−1
s

σh(s)/(σ − 1)

)
dz∗

The inner term is the partial expectation of a log-normal variable, which leads to

Θswitch =

∫ ∞
−∞

e−αs(z
∗−vs−αsσ2

η/2)Φ

(
z∗ − vs− αsσ2

η

ση

)
σ − 1

σh(s)
φ

(
z∗ − z∗0 − r̄

σ−1
s

σh(s)/(σ − 1)

)
dz∗

Completing the square involving z∗ in the exponential term and in φ yields

Θswitch =e
−αs

(
z∗0+( r̄

σ−1
−v)s−αs

σ2
ξ (s)

2

)

×
∫ ∞
−∞

Φ

(
z∗ − vs− αsσ2

η

ση

)
σ − 1

σh(s)
φ

z∗ − z∗0 − r̄
σ−1

s+ αs

(
σh(s)
σ−1

)2

σh(s)/(σ − 1)

 dz∗

Using (1) to evaluate the remaining integral gives the final expression, which corresponds

to the second term of (5):

Θswitch = e
−αs

(
z∗0+( r̄

σ−1
−v)s−αs

σ2
ξ (s)

2

)
Φ

(
z∗0 +

(
r̄

σ−1
− v
)
s− αsσ2

ξ (s)

σξ(s)

)

Noting that all agents who switch into entrepreneurship enter with productivity z∗, ex-
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pected log productivity at entry for these agents is then given by

Eswitch(z|s, a = 0) =

∫∞
−∞ z

∗ ∫ z∗
−∞ e

−αs(z∗−z) 1
ση
φ
(
z−vs
ση

)
dz σ−1

σh(s)
φ
(
z∗−z∗0−

r̄
σ−1

s

σh(s)/(σ−1)

)
dz∗

e
−αs

(
z∗0+( r̄

σ−1
−v)s−αs

σ2
ξ

(s)

2

)
Φ

(
z∗0+( r̄

σ−1
−v)s−αsσ2

ξ (s)

σξ(s)

)

=

∫∞
−∞ z

∗Φ
(
z∗−vs−αsσ2

η

ση

)
σ−1
σh(s)

φ

(
z∗−z∗0−

r̄
σ−1

s+αs
(
σh(s)

σ−1

)2

σh(s)/(σ−1)

)
dz∗

Φ

(
z∗0+( r̄

σ−1
−v)s−αsσ2

ξ (s)

σξ(s)

)
where the second line uses the derivations for Θswitch above. Writing the numerator as a

double integral leads to an expression of the same form as the one for Eborn(z|s, a = 0):

Eswitch(z|s, a = 0) =

∫∞
−∞

∫∞
z
z∗ σ−1

σh(s)
φ

(
z∗−z∗0−

r̄
σ−1

s+αs
(
σh(s)

σ−1

)2

σh(s)/(σ−1)

)
dz∗ 1

ση
φ
(
z−vs−αsσ2

η

ση

)
dz

Φ

(
z∗0+( r̄

σ−1
−v)s−αsσ2

ξ (s)

σξ(s)

)
Following the same steps as for Eborn(z|s, a = 0) yields the final expression:

Eswitch(z|s, a = 0) = z∗0+
r̄

σ − 1
s− αsσ

2
h(s)

(σ − 1)2
+

σ2
h(s)

(σ − 1)2σξ(s)
M

(
−
z∗0 +

(
r̄

σ−1
− v
)
s− αsσ2

ξ (s)

σξ(s)

)

The first two terms correspond to the mean of z∗. The remaining terms represent selection

effects. The third term is negative, and is driven by the fact that the higher z∗ is, the less

likely that an agent’s productivity will grow to the point of transition into entrepreneurship.

The fourth term is positive, and reflects the fact that only agents born with z∗ > z ever

transition into entrepreneurship.

Finally, expected log productivity at entry across all agents is a weighted average of the

two types:

E(z|s, a = 0) =
Eborn(z|s, a = 0)Θborn + Eswitch(z|s, a = 0)Θswitch

Θborn + Θswitch
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C.4 TFP

The expression for TFP in equation (21) in the paper is a function of Z∗, H∗ and H. I derive

each in turn. Z∗ can be expressed as:

Z∗ =
∑
S

θs

∫ ∞
−∞

∫ ∞
z∗

e(σ−1)zf(z)dz
σ − 1

σh(s)
φ

(
z∗ − z∗0 − r̄

σ−1
s

σh(s)/(σ − 1)

)
dz∗

where f(z) is given by (3). The inner integral, with z∗ fixed, is evaluated in Proposition 5 of

Sager and Timoshenko (2019) for a double EMG distribution. Following the same approach

yields ∫ ∞
z∗

e(σ−1)zf(z)dz =

∫ ∞
z∗

e(σ−1)z 1

ση
φ

(
z − vs
ση

)
dz

∫ ∞
0

e(σ−1)zgαse
−αszgdzg

+

∫ z∗

−∞

∫ ∞
z∗−z

e(σ−1)zgαse
−αszgdzge

(σ−1)z 1

ση
φ

(
z − vs
ση

)
dz

The first term corresponds to agents who select into entrepreneurship at birth, and the

second to those who switch into entrepreneurship later in life. Evaluating these integrals

gives∫ ∞
z∗

e(σ−1)zf(z)dz = e(σ−1)vs+
(σ−1)2σ2

η
2

αs
αs − σ + 1

×

[
Φ

(
vs+ (σ − 1)σ2

η − z∗

ση

)
+ e

−(αs−σ+1)

[
z∗−vs−(σ−1)σ2

η−(αs−σ+1)
σ2
η
2

]
Φ

(
z∗ − vs− αsσ2

η

ση

)]

Plugging into the expression for Z∗ leads to two integrals of the same form as those

involved in the derivation of (5). Solving those leads to:

Z∗ =
∑
S

θse
(σ−1)vs+(σ−1)2 σ

2
η
2

αs
αs − σ + 1

[
Φ

((
v − r̄

σ−1

)
s− z∗0 + (σ − 1)σ2

η

σξ(s)

)

+ e
−(αs−σ+1)

[
z∗0+( r̄

σ−1
−v)s−(σ−1)σ2

η−(αs−σ+1)
σ2
ξ (s)

2

]

× Φ

(
z∗0 +

(
r̄

σ−1
− v
)
s− (σ − 1)σ2

η − (αs − σ + 1)σ2
ξ (s)

σξ(s)

)]

Using the definition of the EMG CDF in (4), the term in brackets can be rewritten to
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yield the expression for Z∗ in the paper:

Z∗ =
∑
S

θse
(σ−1)vs+(σ−1)2 σ

2
η
2

αs
αs − σ + 1

[
1− F

(
z∗0 ;

(
v − r̄

σ − 1

)
s+ (σ − 1)σ2

η, σ
2
ξ (s), αs − σ + 1

)]

Using (4) and equation (17) in the paper, H∗ can be expressed as

H∗ =
∑
S

θs

∫ ∞
−∞

eh
1

σh(s)
φ

(
h− r̄s
σh(s)

)

×

[
Φ

(
z∗0 + h

σ−1
− vs

ση

)
− e

−αs
(
z∗0+ h

σ−1
−vs−αs

σ2
η
2

)
Φ

(
z∗0 + h

σ−1
− vs− αsσ2

η

ση

)]
dh

This integral is of the same form as the ones in the expressions above, and solving it

using a similar approach leads to:

H∗ =
∑
S

θse
r̄s+

σh(s)2

2

Φ

z∗0 − (v − r̄
σ−1

)
s+

σ2
h(s)

(σ−1)

σξ(s)


−e
−αs

(
z∗0−(v− r̄

σ−1)s+
σ2
h(s)

(σ−1)
−αs

σ2
ξ (s)

2

)
Φ

z∗0 − (v − r̄
σ−1

)
s+

σ2
h(s)

(σ−1)
− αsσ2

ξ (s)

σξ(s)


=
∑
S

θse
r̄s+

σh(s)2

2 F

(
z∗0 ;

(
v − r̄

σ − 1

)
s− σ2

h(s)

(σ − 1)
, σ2

ξ (s), αs

)
Lastly, H is simply given by

H =
∑
S

θs

∫ ∞
−∞

eh
1

σh(s)
φ

(
h− r̄s
σh(s)

)
dh

=
∑
S

θse
r̄s+

σh(s)2

2

Plugging the expressions for Z∗, H∗ and H into equation (20) in the paper yields the

final expression for TFP.

D Estimation

The parameter m is estimated using the minimum distance procedure developed by Cham-

berlain (1984). First, let g̃s,a(m) denote expected firm growth from age one to age a for

11



schooling level s. Using equations (18), (22) and (23) in the paper, this can be expressed as

g̃s,a(m) = (σ − 1)
δ +m

m

(si − s)αsi − (sj − s)αsj
αsiαsj(si − sj)

(e−m − e−ma)

where the presence of (σ − 1) accounts for the fact that the estimation is performed on

firm size data, not productivity. Given the values for σ, δ, αsi , αsj , si and sj determined

in section IV.E of the paper, g̃s,a is a function of m alone. Next, define the counterpart of

g̃s,a(m) in the reduced form coefficients as β′s,a = βs,a−βs,1, where βs,a denotes the schooling

by age coefficients in equation (1) in the paper. Let ds,a(m) = β′s,a− g̃s,a(m), and stack these

differences for all s and a > 1 into a vector d(m). Let d̂(m) denote the vector obtained

by replacing the β′s,a coefficients in d(m) with their sample counterparts β̂′s,a. Then the

minimum distance estimator is given by

m̂ = arg min
m

d̂(m)′Wd̂(m)

where W is a weighting matrix. I set W = I, the identity matrix, so that all coefficients

receive identical weight.

The estimator m̂ is asymptotically normal with mean equal to the true value of m and

variance σ2
m = (D′D)−1D′ΩD(D′D)−1, where D = ∂d(m)

∂m
and Ω is the covariance matrix of

the β′s,a coefficients. I estimate σ2
m by replacing D and Ω with their sample counterparts.

12



References

Bartelsman, Eric J., and Wayne Gray. 1996. “The NBER Manufacturing Productivity
Database.” National Bureau of Economic Research, Technical Working Paper 0205.

Card, David. 1999. “The Causal Effect of Education on Earnings.” Handbook of labor
economics, 3: 1801–1863.

Chamberlain, Gary. 1984. “Panel Data.” Handbook of econometrics, 2: 1247–1318.

Ciccone, Antonio, and Elias Papaioannou. 2009. “Human Capital, the Structure of
Production, and Growth.” The Review of Economics and Statistics, 91(1): 66–82.

Fracassi, Cesare. 2017. “Corporate Finance Policies and Social Networks.” Management
Science, 63 (8), 2420-2438.

Jones, Charles I., and Jihee Kim. 2018. “A Schumpeterian Model of Top Income In-
equality.” Journal of Political Economy, 126(5): 1785–1826.

Kroszner, Randall S., Luc Laeven, and Daniela Klingebiel. 2007. “Banking Crises,
Financial Dependence, and Growth.” Journal of Financial Economics, 84(1): 187–228.

Nunn, N. 2007. “Relationship-Specificity, Incomplete Contracts, and the Pattern of Trade.”
The Quarterly Journal of Economics, 122(2): 569–600.

Owen, D. B. 1980. “A Table of Normal Integrals.” Communications in Statistics - Simu-
lation and Computation, 9(4): 389–419.

Rajan, Raghuram G., and Luigi Zingales. 1998. “Financial Dependence and Growth.”
The American Economic Review, 88(3): 559–586.

Sager, Erick, and Olga A. Timoshenko. 2019. “The Double EMG Distribution and
Trade Elasticities.” Canadian Journal of Economics/Revue canadienne d’économique,
52(4): 1523–1557.

13



E Appendix Tables

14



Table E.1: Summary Statistics

Entrepreneur Schooling ∈ [0, 6) Entrepreneur Schooling ∈ [6, 9)

N=171 480 N=193 478

Mean SD p10 p50 p90 Mean SD p10 p50 p90

Sales 356.7 1050.0 34.0 141.1 692.2 473.1 5448.7 36.3 150.5 792.0

Value Added 98.4 223.5 8.0 49.5 203.6 119.5 844.5 8.3 52.5 227.1

Employment 6.78 11.51 2.00 4.00 13.00 7.43 26.32 2.00 4.00 14.00

Fixed Assets 73.7 266.9 0.3 17.2 162.3 94.2 719.6 0.6 20.0 184.8

Number of Entrepreneurs 1.49 0.69 1.00 1.00 2.00 1.51 0.69 1.00 1.00 2.00

Entrepreneur Schooling 4.10 0.49 4.00 4.00 5.00 6.27 0.60 6.00 6.00 7.50

Non-Entrepreneur Schooling 5.82 2.36 4.00 5.33 9.00 6.75 2.17 4.00 6.00 9.00

Entrepreneur Experience 33.55 9.35 21.50 33.00 46.00 26.15 8.57 16.00 25.00 38.00

Non-Entrepreneur Experience 21.46 9.71 9.50 20.75 34.29 19.93 9.52 8.00 19.00 32.50

Firm Age 7.76 4.98 2.00 7.00 15.00 6.93 4.89 1.00 6.00 14.00

Entrepreneur Schooling ∈ [9, 12) Entrepreneur Schooling ∈ [12, 15)

N=211 833 N=215 033

Mean SD p10 p50 p90 Mean SD p10 p50 p90

Sales 506.3 3771.8 31.2 145.5 862.8 781.9 10145.5 26.5 148.5 1101.7

Value Added 121.3 710.4 3.6 46.3 231.0 163.3 1599.1 0.8 46.5 282.8

Employment 7.23 25.84 2.00 4.00 13.00 8.25 70.08 1.00 4.00 13.00

Fixed Assets 107.5 980.3 0.5 19.8 192.9 173.0 2823.0 0.5 22.3 236.7

Number of Entrepreneurs 1.38 0.65 1.00 1.00 2.00 1.31 0.84 1.00 1.00 2.00

Entrepreneur Schooling 9.17 0.51 9.00 9.00 10.00 12.18 0.60 12.00 12.00 12.00

Non-Entrepreneur Schooling 8.30 2.53 5.00 9.00 12.00 9.96 3.08 6.00 10.50 12.50

Entrepreneur Experience 22.64 9.15 11.00 22.00 35.00 17.91 8.90 7.00 17.00 30.00

Non-Entrepreneur Experience 19.25 9.92 7.00 18.33 32.50 17.43 10.18 5.00 16.00 31.14

Firm Age 5.64 4.70 1.00 4.00 13.00 5.37 4.70 0.00 4.00 12.00

Entrepreneur Schooling ∈ [15, 17] All Firms

N=172 489 N=964 313

Mean SD p10 p50 p90 Mean SD p10 p50 p90

Sales 1399.6 10463.7 27.0 170.8 1861.3 694.3 7207.2 30.9 149.7 1025.9

Value Added 379.5 2766.9 3.2 66.5 495.3 172.4 1487.3 4.5 50.9 275.0

Employment 11.67 66.48 2.00 4.00 18.00 8.21 46.88 2.00 4.00 14.00

Fixed Assets 714.4 11878.6 0.8 31.8 492.0 222.0 5234.3 0.5 21.5 229.3

Number of Entrepreneurs 1.34 1.37 1.00 1.00 2.00 1.40 0.88 1.00 1.00 2.00

Entrepreneur Schooling 16.72 0.68 15.00 17.00 17.00 9.71 4.30 4.00 9.00 17.00

Non-Entrepreneur Schooling 11.43 3.70 6.00 12.00 17.00 8.48 3.44 4.00 8.46 12.00

Entrepreneur Experience 13.60 8.79 4.00 12.00 26.00 22.62 11.11 8.35 22.00 38.00

Non-Entrepreneur Experience 16.23 10.52 4.00 14.44 31.00 18.83 10.13 6.00 18.00 32.33

Firm Age 5.60 4.67 1.00 4.00 12.00 6.21 4.87 1.00 5.00 13.00

Notes: This table presents summary statistics for the sample of firm-year observations in the 2004-2017
period, when both QP and SCIE data are available. Sales and value added are in thousands of 2011 euros.
Employment is the number of workers reported by the firm, including entrepreneurs and non-entrepreneurs,
regardless of employment status and including unpaid workers. Fixed assets is the book value of the firm’s
tangible and intangible assets, also in thousands of 2011 euros. Entrepreneurs are defined in section II in
the paper. Entrepreneur and non-entrepreneur schooling and experience correspond to average years of
schooling and potential experience for each group of workers, where experience is defined as age minus years
of schooling, minus six. Firm age is based on the firm’s reported year of incorporation.

15



Table E.2: Entrepreneur Schooling and Firm Dynamics

(1) (2) (3) (4) (5) (6)

Entrepreneur Schooling ×
Firm Age = 0 0.0206 0.0148 0.0204 0.0216 0.0206 0.0206

(0.0030) (0.0027) (0.0030) (0.0030) (0.0215) (0.0075)

Firm Age = 1 0.0397 0.0335 0.0394 0.0398 0.0397 0.0397

(0.0027) (0.0023) (0.0026) (0.0026) (0.0172) (0.0059)

Firm Age = 2 0.0526 0.0464 0.0527 0.0518 0.0526 0.0526

(0.0027) (0.0024) (0.0027) (0.0027) (0.0168) (0.0048)

Firm Age = 3 0.0604 0.0543 0.0604 0.0594 0.0604 0.0604

(0.0028) (0.0025) (0.0028) (0.0028) (0.0174) (0.0047)

Firm Age = 4 0.0643 0.0580 0.0646 0.0631 0.0643 0.0643

(0.0030) (0.0027) (0.0029) (0.0029) (0.0179) (0.0045)

Firm Age = 5 0.0695 0.0631 0.0694 0.0676 0.0695 0.0695

(0.0031) (0.0028) (0.0030) (0.0030) (0.0186) (0.0049)

Firm Age = 6 0.0704 0.0643 0.0705 0.0683 0.0704 0.0704

(0.0032) (0.0030) (0.0032) (0.0032) (0.0191) (0.0051)

Firm Age = 7 0.0704 0.0643 0.0705 0.0686 0.0704 0.0704

(0.0034) (0.0031) (0.0033) (0.0033) (0.0196) (0.0055)

Firm Age = 8 0.0720 0.0656 0.0719 0.0694 0.0720 0.0720

(0.0035) (0.0033) (0.0034) (0.0034) (0.0195) (0.0054)

Firm Age = 9 0.0701 0.0636 0.0702 0.0685 0.0701 0.0701

(0.0035) (0.0033) (0.0035) (0.0035) (0.0197) (0.0045)

Firm Age = 10 0.0702 0.0637 0.0703 0.0681 0.0702 0.0702

(0.0036) (0.0034) (0.0036) (0.0036) (0.0193) (0.0050)

Entrepreneur Experience 0.0258 0.0337 0.0176 0.0160 0.0258 0.0258

(0.0026) (0.0027) (0.0026) (0.0025) (0.0040) (0.0026)

Entrepreneur Experience2 -0.0004 -0.0005 -0.0002 -0.0001 -0.0004 -0.0004

(0.0001) (0.0001) (0.0001) (0.0000) (0.0001) (0.0000)

Non-Entrepreneur Schooling -0.0039 -0.0028 -0.0032 -0.0039 -0.0039

(0.0032) (0.0032) (0.0032) (0.0088) (0.0034)

Non-Entrepreneur Experience 0.0699 0.0713 0.0702 0.0699 0.0699

(0.0026) (0.0025) (0.0026) (0.0065) (0.0012)

Non-Entrepreneur Experience2 -0.0015 -0.0016 -0.0015 -0.0015 -0.0015

(0.0001) (0.0001) (0.0001) (0.0001) (0.0000)

Log Number of Entrepreneurs 0.6118

(0.0210)

N 218,713 218,713 218,713 215,669 218,713 218,713

R2 0.105 0.082 0.128 0.103 0.105 0.105

Notes: This table reports results from estimating several versions of equation (2) in the paper for the sample
of firms in the 2004-2007 cohorts. Output is measured by sales. Column four employs an alternative definition
of entrepreneurship where a unique individual within each firm is identified as the entrepreneur, by taking
the individual with the highest wage among those identified as entrepreneurs under the baseline definition.
When there are ties in wages, I take the oldest individual, and then drop a residual number of observations
where age does not break the tie. All regressions include firm age and year fixed effects. Errors are clustered
at the firm level in all columns except five and six, where errors are clustered at the sector and year level
respectively.
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F Appendix Figures

Figure F.1: Histogram of Entrepreneur Schooling

Notes: This figure plots a histogram of average entrepreneur schooling for the sample of firm-year observations
in the 2004-2017 period. The five points at which most firms are concentrated correspond to the five main
education levels reported in the data: 4th grade, 6th grade, 9th grade, 12th grade and the licenciatura higher
education degree.
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Figure F.2: Other Outcomes for the 2004-2007 Cohorts

(a) Value Added (b) Employment

(c) Survival

Notes: These figures plot entrepreneur schooling group by firm age coefficients from estimating equation
(1) in the paper for all firms up to age 10 in the 2004-2007 cohorts, when the outcome is value added,
employment or cumulative survival rates. The shaded areas represent 95% confidence intervals. Standard
errors are clustered at the firm level.
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Figure F.3: Firm Life Cycle Dynamics for Other Samples

(a) Sales in the 1995-1997 Cohorts

(b) Sales in the 2017 Cross-Section

Notes: These figures plot entrepreneur schooling group by firm age coefficients from estimating equation (1)
in the paper. Panel a) includes firms up to age 20 in the 1995-1997 cohorts, and panel b) includes all firms
in the 2017 cross-section. Output is measured by sales. In panel b), I use the education of the first top
managers observed in the data to proxy for entrepreneur schooling when firms are not observed from entry,
and firms are grouped into 5-year age bins, plus a separate bin for entrants and one for all firms 50 or older.
The shaded areas represent 95% confidence intervals. Standard errors are clustered at the firm level.
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Figure F.4: Persistence of Top Manager Schooling in the 1995-1997 Cohorts

Notes: This figure plots average top manager schooling by firm age for surviving firms in the 1995-1997
cohorts up to age 20, sorting firms into five groups by average entrepreneur years of schooling. The shaded
areas represent 95% confidence intervals.

20



Figure F.5: Cohort-by-Age Coefficients

Notes: This figure plots cohort-specific schooling-by-age coefficients from estimating (2) in the paper with
the schooling-by-age terms interacted with cohort indicators, for all firms up to age 5 in the 2004 to 2012
cohorts. Output is measured by sales. I include sector-by-year fixed effects to account for differences in
sector composition across cohorts. The shaded areas represent 95% confidence intervals. Standard errors
are clustered at the firm level.
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Figure F.6: Sector Heterogeneity: Additional Evidence

(a) Human Capital Intensity (b) External Finance Dependence

(c) Contract Intensity (d) Physical Capital Intensity

(e) Social Network Intensity

Notes: This figure plots schooling-by-age coefficients from estimating equation (2) in the paper on sales
data separately for above and below median sectors along five different dimensions: human capital intensity
(Ciccone and Papaioannou, 2009), external finance dependence (Rajan and Zingales, 1998), contract intensity
(Nunn, 2007), physical capital intensity, and social networks intensity (Fracassi, 2017). All regressions include
5-digit sector-by-year fixed effects. Data on external financial dependence is from Kroszner, Laeven and
Klingebiel (2007), who reconstruct the Rajan and Zingales (1998) measure at the 3-digit ISIC level. Data
on physical capital intensity is from Bartelsman and Gray (1996), as reported in Ciccone and Papaioannou
(2009). Fracassi (2017) only reports the top 10 and bottom 10 sectors by social network intensity, so I
use this instead of above and below median sectors. The shaded areas represent 95% confidence intervals.
Standard errors are clustered at the firm level. 22



Figure F.7: Sector Heterogeneity: 1-letter Sector Estimates

Notes: This figure plots schooling coefficients at age 10 and the corresponding 95% confidence intervals from
estimating equation (2) in the paper on sales data separately by 1-letter sector. The dashed line corresponds
to the average coefficient across sectors estimated in the overall sample. Besides financial and insurance
activities, which are not covered by SCIE, the figure excludes the utilities sector, which has a small number
of observations (0.03% of the sample) and hence a wide confidence interval, for clarity. Standard errors are
clustered at the firm level.
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Figure F.8: Sector Heterogeneity: 2-digit Sector Estimates

Notes: This figure plots schooling coefficients at age 10 and the corresponding 95% confidence intervals
from estimating equation (2) in the paper on sales data separately by 2-digit sector. The dashed line
corresponds to the average coefficient across sectors estimated in the overall sample. I exclude a set of
small sectors with wide confidence intervals for clarity, namely motion pictures, TV and music, creative arts
and entertainment, employment activities, security and investigation, chemicals, information services, water
transport, basic metals, beverages, other transport equipment, utilities, scientific research and development,
pharmaceuticals and sewerage. Together these sectors represent 1.3% of the sample. Standard errors are
clustered at the firm level.
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Figure F.9: Sales Distributions: Data and Restricted Models

(a) σr = 0

(b) σε = 0

(c) ση = 0

Notes: This figure plots histograms of log sales in the sample and densities of log sales estimated from
restricted versions of the model for the top and bottom entrepreneur schooling groups. The parameters σr,
σε and ση are constrained to equal zero in panels a), b) and c) respectively. Model-implied densities are
evaluated at the mean of entrepreneur schooling in the sample within each group. In the model with σε = 0,
a residual number of observations of entrepreneurs with no schooling are dropped from the estimation, since
equation (16) in the paper cannot be evaluated for these cases.
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